Quick Start Guide
Deploy your first AI agent on Kubernetes in under 5 minutes.
Prerequisites
- Kubernetes cluster (Docker Desktop, kind, minikube, or cloud)
- kubectl configured and connected
Choose your preferred interface:
- Option A (CLI/UI): Install
kaos-clivia pip - Option B (Helm/kubectl): Install Helm 3.x
Option A: KAOS CLI & UI
The easiest way to get started with KAOS.
Step 1: Install the CLI
bash
pip install kaos-cliStep 2: Install the Operator
bash
kaos installThis installs the KAOS operator to your cluster using the published Helm chart.
Step 3: Open the UI
bash
kaos uiThis starts a local proxy and opens the KAOS UI in your browser.
Step 4: Create Your First Agent
In the UI:
- Navigate to Agents → Create Agent
- Fill in the agent details
- Select a ModelAPI (or create one)
- Click Create
Or use the CLI to apply a YAML file:
bash
kubectl apply -f my-agent.yamlNext Steps
- CLI Commands - Full CLI reference
- UI Features - Explore the UI
Option B: Helm & kubectl
For users who prefer direct Kubernetes tooling.
Step 1: Install the Operator
bash
# Add the KAOS Helm repository
helm repo add kaos https://axsaucedo.github.io/kaos/charts
helm repo update
# Install the operator
helm install kaos kaos/kaos-operator -n kaos-system --create-namespaceVerify the operator is running:
bash
kubectl get pods -n kaos-system
# Expected: kaos-controller-manager-xxx RunningStep 2: Deploy a Simple Agent
Create a file my-agent.yaml:
yaml
apiVersion: v1
kind: Namespace
metadata:
name: my-agents
---
apiVersion: kaos.tools/v1alpha1
kind: ModelAPI
metadata:
name: ollama
namespace: my-agents
spec:
mode: Hosted
hostedConfig:
model: "smollm2:135m"
---
apiVersion: kaos.tools/v1alpha1
kind: Agent
metadata:
name: my-agent
namespace: my-agents
spec:
modelAPI: ollama
config:
description: "My first agent"
instructions: "You are a helpful assistant."
env:
- name: MODEL_NAME
value: "ollama/smollm2:135m"Apply it:
bash
kubectl apply -f my-agent.yamlStep 3: Wait for Resources
bash
# Watch resources become ready
kubectl get agent,modelapi -n my-agents -w
# Expected output after ~60s:
# NAME READY PHASE
# agent.kaos.tools/my-agent true Ready
#
# NAME READY PHASE
# modelapi.kaos.tools/ollama true ReadyStep 4: Interact with the Agent
Port-forward to the agent service:
bash
kubectl port-forward -n my-agents svc/agent-my-agent 8000:8000Send a message:
bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "my-agent",
"messages": [{"role": "user", "content": "Hello! What can you do?"}]
}'Adding MCP Tools
Extend your agent with tools by adding an MCPServer:
yaml
apiVersion: kaos.tools/v1alpha1
kind: MCPServer
metadata:
name: echo-tools
namespace: my-agents
spec:
type: python-runtime
config:
tools:
fromString: |
def echo(message: str) -> str:
"""Echo back the message."""
return f"Echo: {message}"Then update your Agent to reference it:
yaml
spec:
mcpServers:
- echo-toolsNext Steps
- Concepts - Understand the architecture
- Multi-Agent Tutorial - Build agent teams
- Custom MCP Tools - Create your own tools